- Timestamp:
- 2007-11-23T22:25:04Z (17 years ago)
- Branches:
- master
- Children:
- 77bfd07
- Parents:
- 56f260a
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
lib/md5.c
r56f260a rdf6d1da 1 1 /* 2 Copyright (C) 1999 Aladdin Enterprises. All rights reserved. 3 4 This software is provided 'as-is', without any express or implied 5 warranty. In no event will the authors be held liable for any damages 6 arising from the use of this software. 7 8 Permission is granted to anyone to use this software for any purpose, 9 including commercial applications, and to alter it and redistribute it 10 freely, subject to the following restrictions: 11 12 1. The origin of this software must not be misrepresented; you must not 13 claim that you wrote the original software. If you use this software 14 in a product, an acknowledgment in the product documentation would be 15 appreciated but is not required. 16 2. Altered source versions must be plainly marked as such, and must not be 17 misrepresented as being the original software. 18 3. This notice may not be removed or altered from any source distribution. 19 20 L. Peter Deutsch 21 ghost@aladdin.com 22 23 */ 24 /* 25 Independent implementation of MD5 (RFC 1321). 26 27 This code implements the MD5 Algorithm defined in RFC 1321. 28 It is derived directly from the text of the RFC and not from the 29 reference implementation. 30 31 The original and principal author of md5.c is L. Peter Deutsch 32 <ghost@aladdin.com>. Other authors are noted in the change history 33 that follows (in reverse chronological order): 34 35 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 36 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5). 37 1999-05-03 lpd Original version. 38 */ 39 2 * MD5 hashing code copied from Lepton's crack <http://usuarios.lycos.es/reinob/> 3 * 4 * Adapted to be API-compatible with the previous (GPL-incompatible) code. 5 */ 6 7 /* 8 * This code implements the MD5 message-digest algorithm. 9 * The algorithm is due to Ron Rivest. This code was 10 * written by Colin Plumb in 1993, no copyright is claimed. 11 * This code is in the public domain; do with it what you wish. 12 * 13 * Equivalent code is available from RSA Data Security, Inc. 14 * This code has been tested against that, and is equivalent, 15 * except that you don't need to include two pages of legalese 16 * with every copy. 17 * 18 * To compute the message digest of a chunk of bytes, declare an 19 * MD5Context structure, pass it to MD5Init, call MD5Update as 20 * needed on buffers full of bytes, and then call MD5Final, which 21 * will fill a supplied 16-byte array with the digest. 22 */ 23 24 #include <sys/types.h> 25 #include <string.h> /* for memcpy() */ 40 26 #include "md5.h" 41 #include <string.h> 42 43 #ifdef TEST 44 /* 45 * Compile with -DTEST to create a self-contained executable test program. 46 * The test program should print out the same values as given in section 47 * A.5 of RFC 1321, reproduced below. 48 */ 49 #include <string.h> 50 main() 51 { 52 static const char *const test[7] = { 53 "", /*d41d8cd98f00b204e9800998ecf8427e*/ 54 "945399884.61923487334tuvga", /*0cc175b9c0f1b6a831c399e269772661*/ 55 "abc", /*900150983cd24fb0d6963f7d28e17f72*/ 56 "message digest", /*f96b697d7cb7938d525a2f31aaf161d0*/ 57 "abcdefghijklmnopqrstuvwxyz", /*c3fcd3d76192e4007dfb496cca67e13b*/ 58 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 59 /*d174ab98d277d9f5a5611c2c9f419d9f*/ 60 "12345678901234567890123456789012345678901234567890123456789012345678901234567890" /*57edf4a22be3c955ac49da2e2107b67a*/ 61 }; 62 int i; 63 64 for (i = 0; i < 7; ++i) { 65 md5_state_t state; 66 md5_byte_t digest[16]; 67 int di; 68 69 md5_init(&state); 70 md5_append(&state, (const md5_byte_t *)test[i], strlen(test[i])); 71 md5_finish(&state, digest); 72 printf("MD5 (\"%s\") = ", test[i]); 73 for (di = 0; di < 16; ++di) 74 printf("%02x", digest[di]); 75 printf("\n"); 76 } 77 return 0; 78 } 79 #endif /* TEST */ 80 81 82 /* 83 * For reference, here is the program that computed the T values. 84 */ 85 #if 0 86 #include <math.h> 87 main() 88 { 89 int i; 90 for (i = 1; i <= 64; ++i) { 91 unsigned long v = (unsigned long)(4294967296.0 * fabs(sin((double)i))); 92 printf("#define T%d 0x%08lx\n", i, v); 93 } 94 return 0; 95 } 96 #endif 97 /* 98 * End of T computation program. 99 */ 100 #define T1 0xd76aa478 101 #define T2 0xe8c7b756 102 #define T3 0x242070db 103 #define T4 0xc1bdceee 104 #define T5 0xf57c0faf 105 #define T6 0x4787c62a 106 #define T7 0xa8304613 107 #define T8 0xfd469501 108 #define T9 0x698098d8 109 #define T10 0x8b44f7af 110 #define T11 0xffff5bb1 111 #define T12 0x895cd7be 112 #define T13 0x6b901122 113 #define T14 0xfd987193 114 #define T15 0xa679438e 115 #define T16 0x49b40821 116 #define T17 0xf61e2562 117 #define T18 0xc040b340 118 #define T19 0x265e5a51 119 #define T20 0xe9b6c7aa 120 #define T21 0xd62f105d 121 #define T22 0x02441453 122 #define T23 0xd8a1e681 123 #define T24 0xe7d3fbc8 124 #define T25 0x21e1cde6 125 #define T26 0xc33707d6 126 #define T27 0xf4d50d87 127 #define T28 0x455a14ed 128 #define T29 0xa9e3e905 129 #define T30 0xfcefa3f8 130 #define T31 0x676f02d9 131 #define T32 0x8d2a4c8a 132 #define T33 0xfffa3942 133 #define T34 0x8771f681 134 #define T35 0x6d9d6122 135 #define T36 0xfde5380c 136 #define T37 0xa4beea44 137 #define T38 0x4bdecfa9 138 #define T39 0xf6bb4b60 139 #define T40 0xbebfbc70 140 #define T41 0x289b7ec6 141 #define T42 0xeaa127fa 142 #define T43 0xd4ef3085 143 #define T44 0x04881d05 144 #define T45 0xd9d4d039 145 #define T46 0xe6db99e5 146 #define T47 0x1fa27cf8 147 #define T48 0xc4ac5665 148 #define T49 0xf4292244 149 #define T50 0x432aff97 150 #define T51 0xab9423a7 151 #define T52 0xfc93a039 152 #define T53 0x655b59c3 153 #define T54 0x8f0ccc92 154 #define T55 0xffeff47d 155 #define T56 0x85845dd1 156 #define T57 0x6fa87e4f 157 #define T58 0xfe2ce6e0 158 #define T59 0xa3014314 159 #define T60 0x4e0811a1 160 #define T61 0xf7537e82 161 #define T62 0xbd3af235 162 #define T63 0x2ad7d2bb 163 #define T64 0xeb86d391 164 165 static void 166 md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/) 167 { 168 md5_word_t 169 a = pms->abcd[0], b = pms->abcd[1], 170 c = pms->abcd[2], d = pms->abcd[3]; 171 md5_word_t t; 172 173 #ifndef ARCH_IS_BIG_ENDIAN 174 # define ARCH_IS_BIG_ENDIAN 1 /* slower, default implementation */ 175 #endif 176 #if ARCH_IS_BIG_ENDIAN 177 178 /* 179 * On big-endian machines, we must arrange the bytes in the right 180 * order. (This also works on machines of unknown byte order.) 181 */ 182 md5_word_t X[16]; 183 const md5_byte_t *xp = data; 184 int i; 185 186 for (i = 0; i < 16; ++i, xp += 4) 187 X[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24); 188 189 #else /* !ARCH_IS_BIG_ENDIAN */ 190 191 /* 192 * On little-endian machines, we can process properly aligned data 193 * without copying it. 194 */ 195 md5_word_t xbuf[16]; 196 const md5_word_t *X; 197 198 if (!((data - (const md5_byte_t *)0) & 3)) { 199 /* data are properly aligned */ 200 X = (const md5_word_t *)data; 201 } else { 202 /* not aligned */ 203 memcpy(xbuf, data, 64); 204 X = xbuf; 205 } 206 #endif 207 208 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) 209 210 /* Round 1. */ 211 /* Let [abcd k s i] denote the operation 212 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ 213 #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) 214 #define SET(a, b, c, d, k, s, Ti)\ 215 t = a + F(b,c,d) + X[k] + Ti;\ 216 a = ROTATE_LEFT(t, s) + b 217 /* Do the following 16 operations. */ 218 SET(a, b, c, d, 0, 7, T1); 219 SET(d, a, b, c, 1, 12, T2); 220 SET(c, d, a, b, 2, 17, T3); 221 SET(b, c, d, a, 3, 22, T4); 222 SET(a, b, c, d, 4, 7, T5); 223 SET(d, a, b, c, 5, 12, T6); 224 SET(c, d, a, b, 6, 17, T7); 225 SET(b, c, d, a, 7, 22, T8); 226 SET(a, b, c, d, 8, 7, T9); 227 SET(d, a, b, c, 9, 12, T10); 228 SET(c, d, a, b, 10, 17, T11); 229 SET(b, c, d, a, 11, 22, T12); 230 SET(a, b, c, d, 12, 7, T13); 231 SET(d, a, b, c, 13, 12, T14); 232 SET(c, d, a, b, 14, 17, T15); 233 SET(b, c, d, a, 15, 22, T16); 234 #undef SET 235 236 /* Round 2. */ 237 /* Let [abcd k s i] denote the operation 238 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ 239 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) 240 #define SET(a, b, c, d, k, s, Ti)\ 241 t = a + G(b,c,d) + X[k] + Ti;\ 242 a = ROTATE_LEFT(t, s) + b 243 /* Do the following 16 operations. */ 244 SET(a, b, c, d, 1, 5, T17); 245 SET(d, a, b, c, 6, 9, T18); 246 SET(c, d, a, b, 11, 14, T19); 247 SET(b, c, d, a, 0, 20, T20); 248 SET(a, b, c, d, 5, 5, T21); 249 SET(d, a, b, c, 10, 9, T22); 250 SET(c, d, a, b, 15, 14, T23); 251 SET(b, c, d, a, 4, 20, T24); 252 SET(a, b, c, d, 9, 5, T25); 253 SET(d, a, b, c, 14, 9, T26); 254 SET(c, d, a, b, 3, 14, T27); 255 SET(b, c, d, a, 8, 20, T28); 256 SET(a, b, c, d, 13, 5, T29); 257 SET(d, a, b, c, 2, 9, T30); 258 SET(c, d, a, b, 7, 14, T31); 259 SET(b, c, d, a, 12, 20, T32); 260 #undef SET 261 262 /* Round 3. */ 263 /* Let [abcd k s t] denote the operation 264 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ 265 #define H(x, y, z) ((x) ^ (y) ^ (z)) 266 #define SET(a, b, c, d, k, s, Ti)\ 267 t = a + H(b,c,d) + X[k] + Ti;\ 268 a = ROTATE_LEFT(t, s) + b 269 /* Do the following 16 operations. */ 270 SET(a, b, c, d, 5, 4, T33); 271 SET(d, a, b, c, 8, 11, T34); 272 SET(c, d, a, b, 11, 16, T35); 273 SET(b, c, d, a, 14, 23, T36); 274 SET(a, b, c, d, 1, 4, T37); 275 SET(d, a, b, c, 4, 11, T38); 276 SET(c, d, a, b, 7, 16, T39); 277 SET(b, c, d, a, 10, 23, T40); 278 SET(a, b, c, d, 13, 4, T41); 279 SET(d, a, b, c, 0, 11, T42); 280 SET(c, d, a, b, 3, 16, T43); 281 SET(b, c, d, a, 6, 23, T44); 282 SET(a, b, c, d, 9, 4, T45); 283 SET(d, a, b, c, 12, 11, T46); 284 SET(c, d, a, b, 15, 16, T47); 285 SET(b, c, d, a, 2, 23, T48); 286 #undef SET 287 288 /* Round 4. */ 289 /* Let [abcd k s t] denote the operation 290 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ 291 #define I(x, y, z) ((y) ^ ((x) | ~(z))) 292 #define SET(a, b, c, d, k, s, Ti)\ 293 t = a + I(b,c,d) + X[k] + Ti;\ 294 a = ROTATE_LEFT(t, s) + b 295 /* Do the following 16 operations. */ 296 SET(a, b, c, d, 0, 6, T49); 297 SET(d, a, b, c, 7, 10, T50); 298 SET(c, d, a, b, 14, 15, T51); 299 SET(b, c, d, a, 5, 21, T52); 300 SET(a, b, c, d, 12, 6, T53); 301 SET(d, a, b, c, 3, 10, T54); 302 SET(c, d, a, b, 10, 15, T55); 303 SET(b, c, d, a, 1, 21, T56); 304 SET(a, b, c, d, 8, 6, T57); 305 SET(d, a, b, c, 15, 10, T58); 306 SET(c, d, a, b, 6, 15, T59); 307 SET(b, c, d, a, 13, 21, T60); 308 SET(a, b, c, d, 4, 6, T61); 309 SET(d, a, b, c, 11, 10, T62); 310 SET(c, d, a, b, 2, 15, T63); 311 SET(b, c, d, a, 9, 21, T64); 312 #undef SET 313 314 /* Then perform the following additions. (That is increment each 315 of the four registers by the value it had before this block 316 was started.) */ 317 pms->abcd[0] += a; 318 pms->abcd[1] += b; 319 pms->abcd[2] += c; 320 pms->abcd[3] += d; 321 } 322 323 void 324 md5_init(md5_state_t *pms) 325 { 326 pms->count[0] = pms->count[1] = 0; 327 pms->abcd[0] = 0x67452301; 328 pms->abcd[1] = 0xefcdab89; 329 pms->abcd[2] = 0x98badcfe; 330 pms->abcd[3] = 0x10325476; 331 } 332 333 void 334 md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes) 335 { 336 const md5_byte_t *p = data; 337 int left = nbytes; 338 int offset = (pms->count[0] >> 3) & 63; 339 md5_word_t nbits = (md5_word_t)(nbytes << 3); 340 341 if (nbytes <= 0) 342 return; 343 344 /* Update the message length. */ 345 pms->count[1] += nbytes >> 29; 346 pms->count[0] += nbits; 347 if (pms->count[0] < nbits) 348 pms->count[1]++; 349 350 /* Process an initial partial block. */ 351 if (offset) { 352 int copy = (offset + nbytes > 64 ? 64 - offset : nbytes); 353 354 memcpy(pms->buf + offset, p, copy); 355 if (offset + copy < 64) 356 return; 357 p += copy; 358 left -= copy; 359 md5_process(pms, pms->buf); 360 } 361 362 /* Process full blocks. */ 363 for (; left >= 64; p += 64, left -= 64) 364 md5_process(pms, p); 365 366 /* Process a final partial block. */ 367 if (left) 368 memcpy(pms->buf, p, left); 369 } 370 371 void 372 md5_finish(md5_state_t *pms, md5_byte_t digest[16]) 373 { 374 static const md5_byte_t pad[64] = { 375 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 376 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 377 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 378 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 379 }; 380 md5_byte_t data[8]; 381 int i; 382 383 /* Save the length before padding. */ 384 for (i = 0; i < 8; ++i) 385 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3)); 386 /* Pad to 56 bytes mod 64. */ 387 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1); 388 /* Append the length. */ 389 md5_append(pms, data, 8); 390 for (i = 0; i < 16; ++i) 391 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3)); 392 } 27 28 static void md5_transform(u_int32_t buf[4], u_int32_t const in[16]); 29 30 /* 31 * Wrapper function for all-in-one MD5 32 * 33 * Bernardo Reino, aka Lepton. 34 * 20021120 35 */ 36 37 void md5_init(struct MD5Context *ctx) 38 { 39 ctx->buf[0] = 0x67452301; 40 ctx->buf[1] = 0xefcdab89; 41 ctx->buf[2] = 0x98badcfe; 42 ctx->buf[3] = 0x10325476; 43 44 ctx->bits[0] = 0; 45 ctx->bits[1] = 0; 46 } 47 48 /* 49 * Update context to reflect the concatenation of another buffer full 50 * of bytes. 51 */ 52 void md5_append(struct MD5Context *ctx, const md5_byte_t *buf, 53 unsigned int len) 54 { 55 u_int32_t t; 56 57 /* Update bitcount */ 58 59 t = ctx->bits[0]; 60 if ((ctx->bits[0] = t + ((u_int32_t) len << 3)) < t) 61 ctx->bits[1]++; /* Carry from low to high */ 62 ctx->bits[1] += len >> 29; 63 64 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 65 66 /* Handle any leading odd-sized chunks */ 67 68 if (t) { 69 unsigned char *p = (unsigned char *) ctx->in + t; 70 71 t = 64 - t; 72 if (len < t) { 73 memcpy(p, buf, len); 74 return; 75 } 76 memcpy(p, buf, t); 77 md5_transform(ctx->buf, (u_int32_t *) ctx->in); 78 buf += t; 79 len -= t; 80 } 81 /* Process data in 64-byte chunks */ 82 83 while (len >= 64) { 84 memcpy(ctx->in, buf, 64); 85 md5_transform(ctx->buf, (u_int32_t *) ctx->in); 86 buf += 64; 87 len -= 64; 88 } 89 90 /* Handle any remaining bytes of data. */ 91 92 memcpy(ctx->in, buf, len); 93 } 94 95 /* 96 * Final wrapup - pad to 64-byte boundary with the bit pattern 97 * 1 0* (64-bit count of bits processed, MSB-first) 98 */ 99 void md5_finish(struct MD5Context *ctx, md5_byte_t digest[16]) 100 { 101 unsigned count; 102 unsigned char *p; 103 104 /* Compute number of bytes mod 64 */ 105 count = (ctx->bits[0] >> 3) & 0x3F; 106 107 /* Set the first char of padding to 0x80. This is safe since there is 108 always at least one byte free */ 109 p = ctx->in + count; 110 *p++ = 0x80; 111 112 /* Bytes of padding needed to make 64 bytes */ 113 count = 64 - 1 - count; 114 115 /* Pad out to 56 mod 64 */ 116 if (count < 8) { 117 /* Two lots of padding: Pad the first block to 64 bytes */ 118 memset(p, 0, count); 119 md5_transform(ctx->buf, (u_int32_t *) ctx->in); 120 121 /* Now fill the next block with 56 bytes */ 122 memset(ctx->in, 0, 56); 123 } else { 124 /* Pad block to 56 bytes */ 125 memset(p, 0, count - 8); 126 } 127 128 /* Append length in bits and transform */ 129 ((u_int32_t *) ctx->in)[14] = ctx->bits[0]; 130 ((u_int32_t *) ctx->in)[15] = ctx->bits[1]; 131 132 md5_transform(ctx->buf, (u_int32_t *) ctx->in); 133 memcpy(digest, ctx->buf, 16); 134 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ 135 } 136 137 /* The four core functions - F1 is optimized somewhat */ 138 139 /* #define F1(x, y, z) (x & y | ~x & z) */ 140 #define F1(x, y, z) (z ^ (x & (y ^ z))) 141 #define F2(x, y, z) F1(z, x, y) 142 #define F3(x, y, z) (x ^ y ^ z) 143 #define F4(x, y, z) (y ^ (x | ~z)) 144 145 /* This is the central step in the MD5 algorithm. */ 146 #define MD5STEP(f, w, x, y, z, data, s) \ 147 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 148 149 /* 150 * The core of the MD5 algorithm, this alters an existing MD5 hash to 151 * reflect the addition of 16 longwords of new data. MD5Update blocks 152 * the data and converts bytes into longwords for this routine. 153 */ 154 static void md5_transform(u_int32_t buf[4], u_int32_t const in[16]) 155 { 156 register u_int32_t a, b, c, d; 157 158 a = buf[0]; 159 b = buf[1]; 160 c = buf[2]; 161 d = buf[3]; 162 163 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 164 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 165 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 166 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 167 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 168 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 169 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 170 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 171 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 172 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 173 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 174 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 175 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 176 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 177 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 178 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 179 180 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 181 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 182 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 183 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 184 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 185 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 186 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 187 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 188 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 189 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 190 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 191 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 192 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 193 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 194 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 195 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 196 197 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 198 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 199 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 200 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 201 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 202 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 203 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 204 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 205 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 206 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 207 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 208 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 209 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 210 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 211 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 212 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 213 214 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 215 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 216 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 217 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 218 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 219 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 220 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 221 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 222 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 223 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 224 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 225 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 226 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 227 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 228 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 229 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 230 231 buf[0] += a; 232 buf[1] += b; 233 buf[2] += c; 234 buf[3] += d; 235 }
Note: See TracChangeset
for help on using the changeset viewer.