/* * SHA1 hashing code copied from Lepton's crack * * Adapted to be API-compatible with the previous (GPL-incompatible) code. */ /* * sha1.c * * Description: * This file implements the Secure Hashing Algorithm 1 as * defined in FIPS PUB 180-1 published April 17, 1995. * * The SHA-1, produces a 160-bit message digest for a given * data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Portability Issues: * SHA-1 is defined in terms of 32-bit "words". This code * uses (included via "sha1.h" to define 32 and 8 * bit unsigned integer types. If your C compiler does not * support 32 bit unsigned integers, this code is not * appropriate. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. Although SHA-1 allows a message digest to be generated * for messages of any number of bits less than 2^64, this * implementation only works with messages with a length that is * a multiple of the size of an 8-bit character. * */ #include #include "sha1.h" /* * Define the SHA1 circular left shift macro */ #define SHA1CircularShift(bits,word) \ (((word) << (bits)) | ((word) >> (32-(bits)))) /* Local Function Prototyptes */ static void sha1_pad(sha1_state_t *); static void sha1_process_block(sha1_state_t *); /* * sha1_init * * Description: * This function will initialize the sha1_state_t in preparation * for computing a new SHA1 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ int sha1_init(sha1_state_t * context) { context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0; context->Computed = 0; context->Corrupted = 0; return shaSuccess; } /* * sha1_finish * * Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. * */ int sha1_finish(sha1_state_t * context, uint8_t Message_Digest[sha1_hash_size]) { int i; if (!context || !Message_Digest) { return shaNull; } if (context->Corrupted) { return context->Corrupted; } if (!context->Computed) { sha1_pad(context); for (i = 0; i < 64; ++i) { /* message may be sensitive, clear it out */ context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1; } for (i = 0; i < sha1_hash_size; ++i) { Message_Digest[i] = context->Intermediate_Hash[i >> 2] >> 8 * (3 - (i & 0x03)); } return shaSuccess; } /* * sha1_append * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ int sha1_append(sha1_state_t * context, const uint8_t * message_array, unsigned length) { if (!length) { return shaSuccess; } if (!context || !message_array) { return shaNull; } if (context->Computed) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) { return context->Corrupted; } while (length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); context->Length_Low += 8; if (context->Length_Low == 0) { context->Length_High++; if (context->Length_High == 0) { /* Message is too long */ context->Corrupted = 1; } } if (context->Message_Block_Index == 64) { sha1_process_block(context); } message_array++; } return shaSuccess; } /* * sha1_process_block * * Description: * This function will process the next 512 bits of the message * stored in the Message_Block array. * * Parameters: * None. * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ static void sha1_process_block(sha1_state_t * context) { const uint32_t K[] = { /* Constants defined in SHA-1 */ 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = 0; t < 16; t++) { W[t] = context->Message_Block[t * 4] << 24; W[t] |= context->Message_Block[t * 4 + 1] << 16; W[t] |= context->Message_Block[t * 4 + 2] << 8; W[t] |= context->Message_Block[t * 4 + 3]; } for (t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]); } A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for (t = 0; t < 20; t++) { temp = SHA1CircularShift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30, B); B = A; A = temp; } for (t = 20; t < 40; t++) { temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30, B); B = A; A = temp; } for (t = 40; t < 60; t++) { temp = SHA1CircularShift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30, B); B = A; A = temp; } for (t = 60; t < 80; t++) { temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30, B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } /* * sha1_pad * * Description: * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * ProcessMessageBlock: [in] * The appropriate SHA*ProcessMessageBlock function * Returns: * Nothing. * */ static void sha1_pad(sha1_state_t * context) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index++] = 0x80; while (context->Message_Block_Index < 64) { context->Message_Block[context-> Message_Block_Index++] = 0; } sha1_process_block(context); while (context->Message_Block_Index < 56) { context->Message_Block[context-> Message_Block_Index++] = 0; } } else { context->Message_Block[context->Message_Block_Index++] = 0x80; while (context->Message_Block_Index < 56) { context->Message_Block[context-> Message_Block_Index++] = 0; } } /* * Store the message length as the last 8 octets */ context->Message_Block[56] = context->Length_High >> 24; context->Message_Block[57] = context->Length_High >> 16; context->Message_Block[58] = context->Length_High >> 8; context->Message_Block[59] = context->Length_High; context->Message_Block[60] = context->Length_Low >> 24; context->Message_Block[61] = context->Length_Low >> 16; context->Message_Block[62] = context->Length_Low >> 8; context->Message_Block[63] = context->Length_Low; sha1_process_block(context); } #define HMAC_BLOCK_SIZE 64 /* BitlBee addition: */ void sha1_hmac(const char *key_, size_t key_len, const char *payload, size_t payload_len, uint8_t Message_Digest[sha1_hash_size]) { sha1_state_t sha1; uint8_t hash[sha1_hash_size]; uint8_t key[HMAC_BLOCK_SIZE+1]; int i; if( key_len == 0 ) key_len = strlen( key_ ); if( payload_len == 0 ) payload_len = strlen( payload ); /* Create K. If our current key is >64 chars we have to hash it, otherwise just pad. */ memset( key, 0, HMAC_BLOCK_SIZE + 1 ); if( key_len > HMAC_BLOCK_SIZE ) { sha1_init( &sha1 ); sha1_append( &sha1, (uint8_t*) key_, key_len ); sha1_finish( &sha1, key ); } else { memcpy( key, key_, key_len ); } /* Inner part: H(K XOR 0x36, text) */ sha1_init( &sha1 ); for( i = 0; i < HMAC_BLOCK_SIZE; i ++ ) key[i] ^= 0x36; sha1_append( &sha1, key, HMAC_BLOCK_SIZE ); sha1_append( &sha1, (const uint8_t*) payload, payload_len ); sha1_finish( &sha1, hash ); /* Final result: H(K XOR 0x5C, inner stuff) */ sha1_init( &sha1 ); for( i = 0; i < HMAC_BLOCK_SIZE; i ++ ) key[i] ^= 0x36 ^ 0x5c; sha1_append( &sha1, key, HMAC_BLOCK_SIZE ); sha1_append( &sha1, hash, sha1_hash_size ); sha1_finish( &sha1, Message_Digest ); }