1 | /* |
---|
2 | * MD5 hashing code copied from Lepton's crack <http://usuarios.lycos.es/reinob/> |
---|
3 | * |
---|
4 | * Adapted to be API-compatible with the previous (GPL-incompatible) code. |
---|
5 | */ |
---|
6 | |
---|
7 | /* |
---|
8 | * This code implements the MD5 message-digest algorithm. |
---|
9 | * The algorithm is due to Ron Rivest. This code was |
---|
10 | * written by Colin Plumb in 1993, no copyright is claimed. |
---|
11 | * This code is in the public domain; do with it what you wish. |
---|
12 | * |
---|
13 | * Equivalent code is available from RSA Data Security, Inc. |
---|
14 | * This code has been tested against that, and is equivalent, |
---|
15 | * except that you don't need to include two pages of legalese |
---|
16 | * with every copy. |
---|
17 | * |
---|
18 | * To compute the message digest of a chunk of bytes, declare an |
---|
19 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
---|
20 | * needed on buffers full of bytes, and then call MD5Final, which |
---|
21 | * will fill a supplied 16-byte array with the digest. |
---|
22 | */ |
---|
23 | |
---|
24 | #include <sys/types.h> |
---|
25 | #include <string.h> /* for memcpy() */ |
---|
26 | #include "md5.h" |
---|
27 | |
---|
28 | static void md5_transform(uint32_t buf[4], uint32_t const in[16]); |
---|
29 | |
---|
30 | /* |
---|
31 | * Wrapper function for all-in-one MD5 |
---|
32 | * |
---|
33 | * Bernardo Reino, aka Lepton. |
---|
34 | * 20021120 |
---|
35 | */ |
---|
36 | |
---|
37 | /* Turns out MD5 was designed for little-endian machines. If we're running |
---|
38 | on a big-endian machines, we have to swap some bytes. Since detecting |
---|
39 | endianness at compile time reliably seems pretty hard, let's do it at |
---|
40 | run-time. It's not like we're going to checksum megabytes of data... */ |
---|
41 | static uint32_t cvt32(uint32_t val) |
---|
42 | { |
---|
43 | static int little_endian = -1; |
---|
44 | |
---|
45 | if (little_endian == -1) |
---|
46 | { |
---|
47 | little_endian = 1; |
---|
48 | little_endian = *((char*) &little_endian); |
---|
49 | } |
---|
50 | |
---|
51 | if (little_endian) |
---|
52 | return val; |
---|
53 | else |
---|
54 | return (val >> 24) | |
---|
55 | ((val >> 8) & 0xff00) | |
---|
56 | ((val << 8) & 0xff0000) | |
---|
57 | (val << 24); |
---|
58 | } |
---|
59 | |
---|
60 | void md5_init(struct MD5Context *ctx) |
---|
61 | { |
---|
62 | ctx->buf[0] = 0x67452301; |
---|
63 | ctx->buf[1] = 0xefcdab89; |
---|
64 | ctx->buf[2] = 0x98badcfe; |
---|
65 | ctx->buf[3] = 0x10325476; |
---|
66 | |
---|
67 | ctx->bits[0] = 0; |
---|
68 | ctx->bits[1] = 0; |
---|
69 | } |
---|
70 | |
---|
71 | /* |
---|
72 | * Update context to reflect the concatenation of another buffer full |
---|
73 | * of bytes. |
---|
74 | */ |
---|
75 | void md5_append(struct MD5Context *ctx, const md5_byte_t *buf, |
---|
76 | unsigned int len) |
---|
77 | { |
---|
78 | uint32_t t; |
---|
79 | |
---|
80 | /* Update bitcount */ |
---|
81 | |
---|
82 | t = ctx->bits[0]; |
---|
83 | if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) |
---|
84 | ctx->bits[1]++; /* Carry from low to high */ |
---|
85 | ctx->bits[1] += len >> 29; |
---|
86 | |
---|
87 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
---|
88 | |
---|
89 | /* Handle any leading odd-sized chunks */ |
---|
90 | |
---|
91 | if (t) { |
---|
92 | unsigned char *p = (unsigned char *) ctx->in + t; |
---|
93 | |
---|
94 | t = 64 - t; |
---|
95 | if (len < t) { |
---|
96 | memcpy(p, buf, len); |
---|
97 | return; |
---|
98 | } |
---|
99 | memcpy(p, buf, t); |
---|
100 | md5_transform(ctx->buf, (uint32_t *) ctx->in); |
---|
101 | buf += t; |
---|
102 | len -= t; |
---|
103 | } |
---|
104 | /* Process data in 64-byte chunks */ |
---|
105 | |
---|
106 | while (len >= 64) { |
---|
107 | memcpy(ctx->in, buf, 64); |
---|
108 | md5_transform(ctx->buf, (uint32_t *) ctx->in); |
---|
109 | buf += 64; |
---|
110 | len -= 64; |
---|
111 | } |
---|
112 | |
---|
113 | /* Handle any remaining bytes of data. */ |
---|
114 | |
---|
115 | memcpy(ctx->in, buf, len); |
---|
116 | } |
---|
117 | |
---|
118 | /* |
---|
119 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
---|
120 | * 1 0* (64-bit count of bits processed, MSB-first) |
---|
121 | */ |
---|
122 | void md5_finish(struct MD5Context *ctx, md5_byte_t digest[16]) |
---|
123 | { |
---|
124 | unsigned count; |
---|
125 | unsigned char *p; |
---|
126 | |
---|
127 | /* Compute number of bytes mod 64 */ |
---|
128 | count = (ctx->bits[0] >> 3) & 0x3F; |
---|
129 | |
---|
130 | /* Set the first char of padding to 0x80. This is safe since there is |
---|
131 | always at least one byte free */ |
---|
132 | p = ctx->in + count; |
---|
133 | *p++ = 0x80; |
---|
134 | |
---|
135 | /* Bytes of padding needed to make 64 bytes */ |
---|
136 | count = 64 - 1 - count; |
---|
137 | |
---|
138 | /* Pad out to 56 mod 64 */ |
---|
139 | if (count < 8) { |
---|
140 | /* Two lots of padding: Pad the first block to 64 bytes */ |
---|
141 | memset(p, 0, count); |
---|
142 | md5_transform(ctx->buf, (uint32_t *) ctx->in); |
---|
143 | |
---|
144 | /* Now fill the next block with 56 bytes */ |
---|
145 | memset(ctx->in, 0, 56); |
---|
146 | } else { |
---|
147 | /* Pad block to 56 bytes */ |
---|
148 | memset(p, 0, count - 8); |
---|
149 | } |
---|
150 | |
---|
151 | /* Append length in bits and transform */ |
---|
152 | ((uint32_t *) ctx->in)[14] = cvt32(ctx->bits[0]); |
---|
153 | ((uint32_t *) ctx->in)[15] = cvt32(ctx->bits[1]); |
---|
154 | |
---|
155 | md5_transform(ctx->buf, (uint32_t *) ctx->in); |
---|
156 | ctx->buf[0] = cvt32(ctx->buf[0]); |
---|
157 | ctx->buf[1] = cvt32(ctx->buf[1]); |
---|
158 | ctx->buf[2] = cvt32(ctx->buf[2]); |
---|
159 | ctx->buf[3] = cvt32(ctx->buf[3]); |
---|
160 | memcpy(digest, ctx->buf, 16); |
---|
161 | memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ |
---|
162 | } |
---|
163 | |
---|
164 | void md5_finish_ascii(struct MD5Context *context, char *ascii) |
---|
165 | { |
---|
166 | md5_byte_t bin[16]; |
---|
167 | int i; |
---|
168 | |
---|
169 | md5_finish(context, bin); |
---|
170 | for (i = 0; i < 16; i ++) |
---|
171 | sprintf(ascii + i * 2, "%02x", bin[i]); |
---|
172 | } |
---|
173 | |
---|
174 | /* The four core functions - F1 is optimized somewhat */ |
---|
175 | |
---|
176 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
---|
177 | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
---|
178 | #define F2(x, y, z) F1(z, x, y) |
---|
179 | #define F3(x, y, z) (x ^ y ^ z) |
---|
180 | #define F4(x, y, z) (y ^ (x | ~z)) |
---|
181 | |
---|
182 | /* This is the central step in the MD5 algorithm. */ |
---|
183 | #define MD5STEP(f, w, x, y, z, data, s) \ |
---|
184 | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
---|
185 | |
---|
186 | /* |
---|
187 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
---|
188 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
---|
189 | * the data and converts bytes into longwords for this routine. |
---|
190 | */ |
---|
191 | static void md5_transform(uint32_t buf[4], uint32_t const in[16]) |
---|
192 | { |
---|
193 | register uint32_t a, b, c, d; |
---|
194 | |
---|
195 | a = buf[0]; |
---|
196 | b = buf[1]; |
---|
197 | c = buf[2]; |
---|
198 | d = buf[3]; |
---|
199 | |
---|
200 | MD5STEP(F1, a, b, c, d, cvt32(in[0]) + 0xd76aa478, 7); |
---|
201 | MD5STEP(F1, d, a, b, c, cvt32(in[1]) + 0xe8c7b756, 12); |
---|
202 | MD5STEP(F1, c, d, a, b, cvt32(in[2]) + 0x242070db, 17); |
---|
203 | MD5STEP(F1, b, c, d, a, cvt32(in[3]) + 0xc1bdceee, 22); |
---|
204 | MD5STEP(F1, a, b, c, d, cvt32(in[4]) + 0xf57c0faf, 7); |
---|
205 | MD5STEP(F1, d, a, b, c, cvt32(in[5]) + 0x4787c62a, 12); |
---|
206 | MD5STEP(F1, c, d, a, b, cvt32(in[6]) + 0xa8304613, 17); |
---|
207 | MD5STEP(F1, b, c, d, a, cvt32(in[7]) + 0xfd469501, 22); |
---|
208 | MD5STEP(F1, a, b, c, d, cvt32(in[8]) + 0x698098d8, 7); |
---|
209 | MD5STEP(F1, d, a, b, c, cvt32(in[9]) + 0x8b44f7af, 12); |
---|
210 | MD5STEP(F1, c, d, a, b, cvt32(in[10]) + 0xffff5bb1, 17); |
---|
211 | MD5STEP(F1, b, c, d, a, cvt32(in[11]) + 0x895cd7be, 22); |
---|
212 | MD5STEP(F1, a, b, c, d, cvt32(in[12]) + 0x6b901122, 7); |
---|
213 | MD5STEP(F1, d, a, b, c, cvt32(in[13]) + 0xfd987193, 12); |
---|
214 | MD5STEP(F1, c, d, a, b, cvt32(in[14]) + 0xa679438e, 17); |
---|
215 | MD5STEP(F1, b, c, d, a, cvt32(in[15]) + 0x49b40821, 22); |
---|
216 | |
---|
217 | MD5STEP(F2, a, b, c, d, cvt32(in[1]) + 0xf61e2562, 5); |
---|
218 | MD5STEP(F2, d, a, b, c, cvt32(in[6]) + 0xc040b340, 9); |
---|
219 | MD5STEP(F2, c, d, a, b, cvt32(in[11]) + 0x265e5a51, 14); |
---|
220 | MD5STEP(F2, b, c, d, a, cvt32(in[0]) + 0xe9b6c7aa, 20); |
---|
221 | MD5STEP(F2, a, b, c, d, cvt32(in[5]) + 0xd62f105d, 5); |
---|
222 | MD5STEP(F2, d, a, b, c, cvt32(in[10]) + 0x02441453, 9); |
---|
223 | MD5STEP(F2, c, d, a, b, cvt32(in[15]) + 0xd8a1e681, 14); |
---|
224 | MD5STEP(F2, b, c, d, a, cvt32(in[4]) + 0xe7d3fbc8, 20); |
---|
225 | MD5STEP(F2, a, b, c, d, cvt32(in[9]) + 0x21e1cde6, 5); |
---|
226 | MD5STEP(F2, d, a, b, c, cvt32(in[14]) + 0xc33707d6, 9); |
---|
227 | MD5STEP(F2, c, d, a, b, cvt32(in[3]) + 0xf4d50d87, 14); |
---|
228 | MD5STEP(F2, b, c, d, a, cvt32(in[8]) + 0x455a14ed, 20); |
---|
229 | MD5STEP(F2, a, b, c, d, cvt32(in[13]) + 0xa9e3e905, 5); |
---|
230 | MD5STEP(F2, d, a, b, c, cvt32(in[2]) + 0xfcefa3f8, 9); |
---|
231 | MD5STEP(F2, c, d, a, b, cvt32(in[7]) + 0x676f02d9, 14); |
---|
232 | MD5STEP(F2, b, c, d, a, cvt32(in[12]) + 0x8d2a4c8a, 20); |
---|
233 | |
---|
234 | MD5STEP(F3, a, b, c, d, cvt32(in[5]) + 0xfffa3942, 4); |
---|
235 | MD5STEP(F3, d, a, b, c, cvt32(in[8]) + 0x8771f681, 11); |
---|
236 | MD5STEP(F3, c, d, a, b, cvt32(in[11]) + 0x6d9d6122, 16); |
---|
237 | MD5STEP(F3, b, c, d, a, cvt32(in[14]) + 0xfde5380c, 23); |
---|
238 | MD5STEP(F3, a, b, c, d, cvt32(in[1]) + 0xa4beea44, 4); |
---|
239 | MD5STEP(F3, d, a, b, c, cvt32(in[4]) + 0x4bdecfa9, 11); |
---|
240 | MD5STEP(F3, c, d, a, b, cvt32(in[7]) + 0xf6bb4b60, 16); |
---|
241 | MD5STEP(F3, b, c, d, a, cvt32(in[10]) + 0xbebfbc70, 23); |
---|
242 | MD5STEP(F3, a, b, c, d, cvt32(in[13]) + 0x289b7ec6, 4); |
---|
243 | MD5STEP(F3, d, a, b, c, cvt32(in[0]) + 0xeaa127fa, 11); |
---|
244 | MD5STEP(F3, c, d, a, b, cvt32(in[3]) + 0xd4ef3085, 16); |
---|
245 | MD5STEP(F3, b, c, d, a, cvt32(in[6]) + 0x04881d05, 23); |
---|
246 | MD5STEP(F3, a, b, c, d, cvt32(in[9]) + 0xd9d4d039, 4); |
---|
247 | MD5STEP(F3, d, a, b, c, cvt32(in[12]) + 0xe6db99e5, 11); |
---|
248 | MD5STEP(F3, c, d, a, b, cvt32(in[15]) + 0x1fa27cf8, 16); |
---|
249 | MD5STEP(F3, b, c, d, a, cvt32(in[2]) + 0xc4ac5665, 23); |
---|
250 | |
---|
251 | MD5STEP(F4, a, b, c, d, cvt32(in[0]) + 0xf4292244, 6); |
---|
252 | MD5STEP(F4, d, a, b, c, cvt32(in[7]) + 0x432aff97, 10); |
---|
253 | MD5STEP(F4, c, d, a, b, cvt32(in[14]) + 0xab9423a7, 15); |
---|
254 | MD5STEP(F4, b, c, d, a, cvt32(in[5]) + 0xfc93a039, 21); |
---|
255 | MD5STEP(F4, a, b, c, d, cvt32(in[12]) + 0x655b59c3, 6); |
---|
256 | MD5STEP(F4, d, a, b, c, cvt32(in[3]) + 0x8f0ccc92, 10); |
---|
257 | MD5STEP(F4, c, d, a, b, cvt32(in[10]) + 0xffeff47d, 15); |
---|
258 | MD5STEP(F4, b, c, d, a, cvt32(in[1]) + 0x85845dd1, 21); |
---|
259 | MD5STEP(F4, a, b, c, d, cvt32(in[8]) + 0x6fa87e4f, 6); |
---|
260 | MD5STEP(F4, d, a, b, c, cvt32(in[15]) + 0xfe2ce6e0, 10); |
---|
261 | MD5STEP(F4, c, d, a, b, cvt32(in[6]) + 0xa3014314, 15); |
---|
262 | MD5STEP(F4, b, c, d, a, cvt32(in[13]) + 0x4e0811a1, 21); |
---|
263 | MD5STEP(F4, a, b, c, d, cvt32(in[4]) + 0xf7537e82, 6); |
---|
264 | MD5STEP(F4, d, a, b, c, cvt32(in[11]) + 0xbd3af235, 10); |
---|
265 | MD5STEP(F4, c, d, a, b, cvt32(in[2]) + 0x2ad7d2bb, 15); |
---|
266 | MD5STEP(F4, b, c, d, a, cvt32(in[9]) + 0xeb86d391, 21); |
---|
267 | |
---|
268 | buf[0] += a; |
---|
269 | buf[1] += b; |
---|
270 | buf[2] += c; |
---|
271 | buf[3] += d; |
---|
272 | } |
---|